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Abstract In this paper, we develop an approach that determines the overall best
parameter setting in design of experiments. The approach starts with successive orthog-
onal array experiments and ends with a full factorial experiment. The setup for the next
orthogonal-array experiment is obtained from the previous one by either fixing a factor at a
given level or by reducing the number of levels considered for all currently non-fixed fac-
tors. We illustrate this method using an industrial problem with seven parameters, each with
three levels. In previous work, the full factorial of 37 = 2,187 points was evaluated and the
best point was found. With the new method, we found the same point using 3% of these
evaluations. As a further comparison, we obtained the optimum using a traditional Taguchi
approach, and found it corresponded to the 366th of the 2,187 possibilities when sorted by
the objective function. We conclude the proposed approach would provide an accurate, fast,
and economic tool for optimization using design of experiments.

Keywords Design of experiments · Orthogonal array · Factorial · Taguchi approach

1 Introduction

Introducing a new product or process design would give an effective way for a corporation
to handle competition from its industry rivals. When a new design is introduced, several
parameters (or factors) influence its objective characteristics. Each parameter could contain
several optional levels for costs, safety, reliability, performance, etc. Thus, the parameters
and their levels would form many optional settings, from which the ideal one is expected to
be selected for the design.

Within the levels specified for factors of a design, most organizations would hope to
determine the optimal or a workable setting through the design of experiment. Typically, two
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approaches are used in design of experiments, a full factorial experiment and a fractional
factorial one.

A full factorial experiment conducts all possible combinations of the factor levels and
therefore can reach the overall optimum setting, but it becomes overwhelming if the number
of the design’s parameters or levels increases. For example, if a new design involves 12
three-level parameters, the experiment needs to conduct 531441( = 312) settings. Therefore,
the approach is only practical for a limited number of parameters and levels.

To overcome the full factorial experiment’s limitation, a fractional factorial approach was
developed originally by a British Statistician R. A. Fisher in the 1920s [1]. Fisher showed
the full factorial array used in a full factorial experiment could be reduced to a smaller, but
still statistically meaningful array, which is usually referred to as an orthogonal array.

An orthogonal array has two major requirements. The first is that the levels of any fac-
tor occur with the same frequency. The second is that, for any two factors, each possible
combination of levels takes place with the same frequency. If all factors have q levels, an
orthogonal array is usually expressed as L M (qm) where m is the number of factors and M
represents the number of rows in the array (a multiple of q2).

In the study of orthogonal arrays, Taguchi [2] explored the entire design space with a few
experiments and suggested several standard orthogonal arrays. He classified them into three
types: 2-level arrays (L4, L8, L16, L32, L64), 3-level arrays (L9, L27, L81), and mixed 2-and-
3-level arrays (L18, L36, L54). For example, if one has 12 three-level parameters, Taguchi
chooses the L27 design and so only conducts 27 specified settings. In this way, for a design
containing many parameters and levels, a fractional factorial approach could determine a fea-
sible parameter setting with much less effort and time because of using the orthogonal array.

Taguchi further defined a loss function to evaluate the deviation between an experimental
value and a desired value. The loss function is a way to measure the performance charac-
teristic deviation from the desired value. The value of a loss function was further redefined
as a signal-to-noise (S/N) ratio. In general, a larger S/N ratio corresponds to a better design;
that is, the design parameter setting is the one having the highest S/N ratio in the orthogonal
array.

The Taguchi approach has been used widely in designing high-quality products at low cost
in the engineering industry because the approach provides an acceptable solution effectively.
Ghani et al. [3] applied the Taguchi approach in optimizing end milling parameters. Their
results showed the optimal end milling parameters were determined with a minimum number
of trials rather than a huge amount of trials in a full factorial design. Chen et al. [4] used finite
element techniques and the Taguchi approach to optimize package design for plastic quad flat
package (PQFP) with and without an assembled heat slug. Lin et al. [5] combined the grey
relational analysis based on an orthogonal array and the fuzzy-based Taguchi approach to
optimize the electrical discharge machining (EDM) process with multiple process responses.

However the design parameter setting determined by the Taguchi process is essentially a
local optimum [6,7]. One must know the difference between this local optimum and a glob-
ally optimum in order to know the quality of the local optimum. Unfortunately, finding the
global optimum can only be guaranteed via a full factorial experiment, which is prohibitive
for many factors and levels. Consequently, limited research exists comparing the best two
parameter settings from different approaches.

In this study a novel approach has been developed that creatively combines both the full
and the fractional factorial approaches. The developed algorithm starts with several succes-
sive fractional factorial experiments and ends with a full factorial approach. In the algorithm
we use the analysis of variance (ANOVA) to rank the involved factors according to their
influences on the design’s objective characteristics.
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To verify the proposed approach, we applied it in designing a hatch corner having a groove
with-a-hole for a 1092 TEU containership. The details in the application of the proposed
approach will be described in the section. The results in this section show that our approach
determines the globally best parameter setting using far less optional settings, <3% the num-
ber by a full factorial approach. The results also presented Taguchi approach’s solution ranks
far below the global optimum.

2 Algorithm of the proposed approach

The proposed algorithm starts with a series of fractional factorial experiments. The number
of the series depends on the number of parameters of a new design. The parameters are
gradually optimized for each fractional factorial step. Finally, a full factorial experiment is
conducted for the remaining level-varying parameters to reach the globally best parameter
setting. The algorithm was formulated below in 10 steps.

Step 1: Define an initiated design and identify its objective characteristics.
Step 2: Identify the factors (or parameters) affecting the design’s objective characteristics.
Step 3: Identify each factor’s levels of the design.
Step 4: Select a suitable orthogonal array by the number of factors to conduct a fractional

factorial experiment.
Step 5: Determine the design’s objective value for each setting in the orthogonal array and

weigh its influence by applying signal-and-noise (S/N) analysis.
Step 6: Calculate the average S/N ratio of all the settings in the array, denoted as AVall .

Compute the average S/N ratio of the settings for each factor with a given level,
denoted as AVlvl . Plot the line graph by connecting each factor levels’ AVlvl to
determine the predicted best parameter setting in this experiment (the point that
combines the best level for each factor according to the main effects) Then deter-
mine actual S/N ratio value for the best setting by running the computer simulation;
denote the result as S/Nlg .

Step 7: Judge (a) if S/Nlg > AVall , then go to the Step 8; or (b) eliminate the level with
the worst AVlvl value from each factor that has not yet been fixed to a single level
and go to Step 4.

Step 8: Determine the most influential factor in this experiment by analysis of variance and
fix its level at the factor’s best level. Since the determined most influential factor has
its level fixed as the best one, we will call it a ‘fixed factor’ in the coming successive
tests and the other factors the ‘non-fixed’ ones.

Step 9: Examine whether the number of the non-fixed factors has been reduced enough
to conduct a full factorial experiment. If yes, then go to Step 10; otherwise go to
Step 4.

Step 10: Conduct a full factorial experiment and then achieve the globally best parameter
setting for the design.

It is worth mentioning if we end at Step 6 in the first fractional factorial experiment, our
approach would obtain the same solution as Taguchi approach’s.

3 Design optimization of a groove with-a-hole of a hatch corner

A hatch opening is needed for a ship to handle the access and engineering services. However,
the opening causes discontinuities in ship structure. The discontinuities would result in stress
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concentrations near the opening, decreasing ship’s safety navigating in an unpredictable sea
state. Therefore, designing a hatch opening to improve stress concentrations used to be an
essential task for shipbuilding engineers and researchers (Williams [8], Imamasa et al. [9],
Huang [10]). Figure 1 is shown with three types of structure-strengthening designs typically
used for a hatch opening.

The groove with-a-hole design in Fig. 1 starts at a point P (the point of tangency between
the corner’s horizontal surface and the outer arc), penetrates through the corner’s vertical
surface, and ends with a circular hole. An outer arc, a middle arc and an inner arc define
the groove’s track. As a result, the design’s configuration will be determined by the arcs’
curvatures, the hole’s size and location, the p point’s location, which in the following were
represented by six parameters defined in Fig. 2 as Rout , Rmd , Rin , Rhl , θ and Wd . Besides,
the shape penetrating on the corner’s vertical surface was considered another parameter
influencing the stress distribution near the corner.

Zeng [11] numerically studied the hatch corner in a 1092 TEU containership by consid-
ering three different kinds of shapes shown in Fig. 3 and specifying the six parameters with
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Fig. 1 Three different hatch corner devices with (a) a bracket, (b) a Keyhole, (c) a groove with-a-hole

dW

p

rP
hlR

outR
1RP

dW

2RP

θ

inR
mdR

CRP 2dW

outR , mdR , inR the outer, middle and inner

arc’s radii, 

1RP , CRP , 2RP the outer, middle and inner

arc’s centers, 

hlR : the hole’s radius, rP : the hole’s center, 

dW : the width between point P and the 

intersecting point of the inner arc and the line

PPCR ,

θ :the angle between PPCR and rCR PP

intersecting at CRP .

Fig. 2 The configuration of a groove with-a-hole at a hatch corner seen from the above
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Fig. 3 Three different openings of a groove on the vertical surface of the corner

three levels each. He carried out 2,187 optional settings using a commercial structural code
ANSYS [12] to determine the overall best one for the design.

The question of whether Zeng’s work be determined by the fractional factorial experiment
sparked the present work. Therefore, the case by Zeng was used as a practical example to
verify our approach developed in the study.

3.1 Description of parameters and levels

The 1092 TEU containership was designed by the United Ship Design and Development
Center (http://www.usddc.org.tw). The designed speed is 18 knots, and the ship’s displace-
ment is 20,180 ton. The ship’s general arrangement was shown in Fig. 4 and its main dimen-
sions were displayed on Table 1. Soft and high-tension steels were used for ship construction.
The equivalent yielding stress of the soft steel is 26 kgf/mm2 and two different high-tension
steels have equivalent yielding stresses of 32 kgf/mm2 and 36 kgf/mm2. The steel’s Young’s
Modulus is 2.14 × 104 kgf/mm2 and the Poisson ratio is 0.3.

Zeng considered two elliptical shapes and one circular shape respectively to examine
shape’s effect on the improvement in the stress concentration. In the following, the first
ellipse was referred as to Type 1 having a ratio of its major axis in the vertical direction to
its minor axis equal 2.0; the circular as Type 2; another ellipse as Type 3 with a ratio of its
major axis in the horizontal direction to its minor axis equal to 1.5. Here, the length of the
ellipse’s major axis links to the parameter Wd and the parameter Rin in a relationship of

Major axis = 0.5 ×
{

Wd + Rin − Rin × [
1 − (0.8/Rin)2]1/2

}

Hence, once Wd and Rin are given, the ellipse is determined. Note for the circular shape, the
circle’s diameter equals the major axis.

The three various levels for the six parameters are presented in Table 2.

3.2 Description of numerical calculation

The hatch corner in the study sits at the section between Frame 40 and Frame 60 of the
containership. The distributions of the mesh elements for the section and the fine grids near
the groove with-a-hole in the work are shown in Fig. 5.

There were two stages in the numerical structural analysis of the ship. First, we used
multi-celled ship’s structure stress analysis by a thin-walled member theory to get the rough
numerical structural analysis of the entire ship subjected to wave loadings according to
Lloyd’s Register, UK [13]. In the calculation we obtained the distributions of the twisting
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Fig. 4 The general arrangement of the 1092 TEU containership

Table 1 Main dimensions
of 1092 TEU container ship

Length over all 155.0 m

Length between perpendiculars 145.0 m

Ship width 25.0 m

Ship depth 13.9 m

Designed draft 8.4 m

Table 2 The three various levels for the six parameters

Level Parameter factor

Wd θ Rmd Rhl Rout Rin

1 0.3 55 1.4 0.30 1.3 1.3

2 0.4 60 1.5 0.35 1.5 1.5

3 0.5 65 1.6 0.40 1.7 1.7

angle, the deflection displacement, the shear center, the bending stress, the shear stress etc.
in all sections. Second, some of the previous results were taken as the physical boundary
conditions for the section of interest, and then the ANSYS code was used in this work to
obtain the stress distributions over the hatch corner for this section.

In the following we used a symbol “ℵ” to represent the parameter, which has three levels
of Type 1, Type 2, and Type 3. Therefore, this design involves seven three-level factors, and
they are Wd , θ , Rmd , Rhl , Rout , Rin and ℵ. Clearly, there would be 2187(= 37) optional
settings formed as if a solution pool, from which the ideal setting will be selected for the
hatch corner.
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Fig. 5 The distributions of elements for the Frame40-60 Section and fine grids near the groove with-a-hole

The maximum equivalent stress near the groove defines the objective characteristics of
the problem. Once a setting is picked from the pool, the stress is determined through ANSYS
numerical analysis. To apply Taguchi’s signal/noise analysis, we related the value, denoted
as y, to the S/N ratio in the form of

S/N = −10 log y2 (1)

3.3 The first factorial experiment (fractional)

Since there are seven three-level factors for the case, we used a Taguchi’s orthogonal array
L18 shown in Table 3. There are 18 settings arranged in the way required by the array. Next,
processing the stress analysis for each setting, we determined the respective S/N ratio defined
by Eq. 1. Accordingly, all 18 settings’ S/N ratio values were obtained and presented in the
last column in Table 3.

As stated in the algorithm, AVlvl represents the average S/N ratio for a factor at a given
level. Its value represents the level’s weight on stress concentration distribution. The larger is
the AVlvl , the better is the design. After some calculations, we obtained 18 AVlvl values for
the seven factors, and the level’s influences for each factor were seen clearly by a line graph
shown in Fig. 6. Therefore, in Fig. 6, the combination of each factor’s best level gave the best
setting for the experiment, including level 1 of Wd , level 1 of θ , level 3 of Rmd , level 3 of
Rhl , level 2 of Rout and level 2 of Rin . For describing in the following text, we superscripted
each factor by its best level number, and then expressed the best setting as (W 1

d = 0.3, θ1 = 55,
R3

md = 1.6, R3
hl = 0.4, R2

out = 1.5, R2
in =1.5, ℵ3 = Type 3).

Then, we ran the ANSYS code again for the best setting and then determined its S/N ratio
as −24.4720. Note the S/N ratio could be taken out of the array because the best setting could
be one of the 18 settings tested. Next, we calculated the average S/N ratio of the 18 settings,
AVall , as −25.9160. The fact the S/Nlg is greater than the AVall satisfied the algorithm’s
Step 7.

In the work the analysis of variance was used to determine the most influential of the seven
factors in this experiment. To weigh a factor’s effect on the S/N ratio, we defined a parameter
SSF for a factor as the sum of the difference squared between each AVlvl and AVall , and
expressed it as
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Table 3 The presentation of 18 settings and their S/N ratio values in the first factorial experiment

Trial no. 18 Seven-factor settings (L18 orthogonal array) S/N ratio

Wd θ Rmd Rhl Rout Rin ℵ
1 0.3 55 1.4 0.3 1.3 1.3 Type 1 −25.3828

2 0.3 60 1.5 0.35 1.5 1.5 Type 2 −24.6238

3 0.3 65 1.6 0.4 1.7 1.7 Type 3 −24.1661

4 0.4 55 1.4 0.35 1.5 1.7 Type 3 −24.9388

5 0.4 60 1.5 0.4 1.7 1.3 Type 1 −25.0948

6 0.4 65 1.6 0.3 1.3 1.5 Type 2 −25.1670

7 0.5 55 1.5 0.3 1.7 1.5 Type 3 −24.7780

8 0.5 60 1.6 0.35 1.3 1.7 Type 1 −24.9275

9 0.5 65 1.4 0.4 1.5 1.3 Type 2 −24.8593

10 0.3 55 1.6 0.4 1.5 1.5 Type 1 −24.0759

11 0.3 60 1.4 0.3 1.7 1.7 Type 2 −25.6642

12 0.3 65 1.5 0.35 1.3 1.3 Type 3 −24.5114

13 0.4 55 1.5 0.4 1.3 1.7 Type 2 −24.5649

14 0.4 60 1.6 0.3 1.5 1.3 Type 3 −24.9967

15 0.4 65 1.4 0.35 1.7 1.5 Type 1 −25.4850

16 0.5 55 1.6 0.35 1.7 1.3 Type 2 −24.8269

17 0.5 60 1.4 0.4 1.3 1.5 Type 3 −24.7443

18 0.5 65 1.5 0.3 1.5 1.7 Type 1 −25.6796
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Fig. 6 The line graph of lines formed by three-level AVlvl versus seven respective factors

SSF =
nl∑

i=1

ns(AV i
lvl − AVall)

2 (2)

where nl represents the number of a factor’s levels and ns stands for the number of settings
with a given level. In this analysis, ns = 6 and nl = 3. Therefore, the SSF of the Wd factor
was calculated by
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Table 4 SSF values of the tested factors for the five respective fractional factorial experiments

Fractional factorial
experiment

SSF of the tested factors

Wd θ Rmd Rhl Rout Rin ℵ
First 0.1512 0.1092 0.3613 0.7262 0.0344 0.0514 0.2681

Second 0.0773 0.0088 0.6466 0.0399 0.0964 0.2058

Third 0.0728 0.0114 0.0607 0.0451 0.3277

Fourth Orthogonal array changes from L18 into L8

Fifth 0.0804 0.0020 0.0006 0.0015

SSF =
3∑

i=1

ns(AV i
lvl − AVall)

2 = 6(−24.7374 + 24.9156)2 + 6(−25.0412 + 24.9156)2

+ 6(−24.9693 + 24.9156)2 = 0.1512

So, the other six factors’ SSF values were calculated and presented in Table 4. Table 4 clearly
shows the factor Rhl in this experiment as the most influential in improving stress concentra-
tion. Also, the level 3 (0.4) was selected as the factor’s most influential one among the three
levels.

3.4 The second factorial experiment (fractional)

The orthogonal array L18 was used again in the second experiment for six non-fixed factors
and one fixed factor, Rhl = 0.4. Also, 18 settings were arranged in the array shown in
Table 5. Since six of the 18 settings already existed in Table 3, only the other 12 set-
tings needed to be conducted by ANSYS code. The 18 settings’ S/N ratios are presented in
Table 5.

The line graph for the six factors was shown in Fig. 7. Compared with the results in
Fig. 6, we found all AVlvl values in Fig. 7 are larger than −25.0. Besides, for each factor
the deviation between its greatest and lowest AVlvl values became narrower than the one
in the last experiment. The fact justified the factor Rhl as the most influential among the
seven. Figure 7 shows the best setting as (W 1

d = 0.3, θ2 = 60, R3
md = 1.6, Rhl = 0.4, R3

out = 1.7,
R2

in = 1.5, ℵ2 = Type 2). After running ANSYS code for the new setting, we determined its
S/N ratio value, S/Nlg , as −24.3644. From Table 5, we calculated the average S/N ratio of
the 18 settings, AVall , as −24.6193.

The six factors’ SSF values were calculated and displayed in Table 4, from which the
factor Rmd was seen as the most influential in this experiment because of having the largest
SSF value. Figure 7 shows the level 3 was found as the factor’s best level.

3.5 The third factorial experiment (fractional)

We kept using the orthogonal array L18 in the third experiment for five non-fixed factors and
two fixed factors, Rhl = 0.4, Rmd = 1.6. The 18 different settings in the array are shown in
Table 6. Since six of the 18 settings were found in Table 5, like the second experiment, this
experiment was completed with 12 ANSYS numerical analyses for as many new settings.
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Table 5 The presentation of 18 settings and their S/N ratio values in the second factorial experiment

Trial no. 18 Seven-factor settings (L18 orthogonal array) S/N ratio

Wd θ Rmd Rhl Rout Rin ℵ
1 0.3 55 1.4 0.4 1.3 1.3 Type 1 −25.3152

2 0.3 60 1.5 0.4 1.5 1.5 Type 2 −24.3865

3 0.3 65 1.6 0.4 1.7 1.7 Type 3 −24.1661

4 0.4 55 1.4 0.4 1.5 1.7 Type 3 −25.2300

5 0.4 60 1.5 0.4 1.7 1.3 Type 1 −25.0948

6 0.4 65 1.6 0.4 1.3 1.5 Type 2 −24.3665

7 0.5 55 1.5 0.4 1.7 1.5 Type 3 −24.5639

8 0.5 60 1.6 0.4 1.3 1.7 Type 1 −24.5880

9 0.5 65 1.4 0.4 1.5 1.3 Type 2 −24.8593

10 0.3 55 1.6 0.4 1.5 1.5 Type 1 −24.0759

11 0.3 60 1.4 0.4 1.7 1.7 Type 2 −24.4787

12 0.3 65 1.5 0.4 1.3 1.3 Type 3 −24.5072

13 0.4 55 1.5 0.4 1.3 1.7 Type 2 −24.5649

14 0.4 60 1.6 0.4 1.5 1.3 Type 3 −24.1688

15 0.4 65 1.4 0.4 1.7 1.5 Type 1 −24.7025

16 0.5 55 1.6 0.4 1.7 1.3 Type 2 −24.1554

17 0.5 60 1.4 0.4 1.3 1.5 Type 3 −24.7443

18 0.5 65 1.5 0.4 1.5 1.7 Type 1 −25.1795
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Fig. 7 The line graph of lines formed by three-level AVlvl versus six respective factors

Then, the 18 settings’ S/N ratio values were determined and presented in the last column in
Table 6.

The S/N ratio values of the 18 settings were found closer in this experiment than the
previous two experiments. The results of the line graph in Fig. 8 revealed the best setting in
this experiment as (Wd3 = 0.5, θ1 = 55, Rmd = 1.6, Rhl = 0.4, R3

out = 1.7, R2
in = 1.5, ℵ3 =

Tape 3). After completing the ANSYS analysis for the chosen setting, we determined its S/N
ratio value, S/Nlg , as −23.9263. Next, the average S/N ratio of the 18 settings, AVall , was
calculated from Table 7 as −24.3765.

Table 4 shows the factor ℵ as the most influential one in this experiment, and Fig. 8 shows
Type 3 as the factor’s best level.
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Table 6 The presentation of 18 settings and their S/N ratio values in the third factorial experiment

Trial no. 18 Seven-factor settings (L18 orthogonal array) S/N ratio

Wd θ Rmd Rhl Rout Rin ℵ
1 0.3 55 1.6 0.4 1.3 1.3 Type1 −25.3152

2 0.3 60 1.6 0.4 1.5 1.5 Type 2 −24.6696

3 0.3 65 1.6 0.4 1.7 1.7 Type 3 −24.1661

4 0.4 55 1.6 0.4 1.5 1.7 Type 3 −24.2937

5 0.4 60 1.6 0.4 1.7 1.3 Type 1 −24.6416

6 0.4 65 1.6 0.4 1.3 1.5 Type 2 −24.3665

7 0.5 55 1.6 0.4 1.7 1.5 Type 3 −23.9263

8 0.5 60 1.6 0.4 1.3 1.7 Type 1 −24.5880

9 0.5 65 1.6 0.4 1.5 1.3 Type 2 −24.2438

10 0.3 55 1.6 0.4 1.5 1.5 Type 1 −24.0759

11 0.3 60 1.6 0.4 1.7 1.7 Type 2 −24.3513

12 0.3 65 1.6 0.4 1.3 1.3 Type 3 −24.2889

13 0.4 55 1.6 0.4 1.3 1.7 Type 2 −24.2672

14 0.4 60 1.6 0.4 1.5 1.3 Type 3 −24.1688

15 0.4 65 1.6 0.4 1.7 1.5 Type 1 −24.6172

16 0.5 55 1.6 0.4 1.7 1.3 Type 2 −24.1554

17 0.5 60 1.6 0.4 1.3 1.5 Type 3 −24.1273

18 0.5 65 1.6 0.4 1.5 1.7 Type 1 −24.5150
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Fig. 8 The line graph of the AVlvl of three levels versus the five respective factors

3.6 The fourth factorial experiment (fractional)

The orthogonal array L18 was used again for the four non-fixed factors and the three fixed
factors, Rhl = 0.4, Rmd = 1.6, ℵ = Type 3. The 18 different settings were arranged in the
array in Table 7. Similarly, six of the 18 settings appeared in Table 6, so 12 settings were pro-
cessed by as many ANSYS analyses. Then, the 18 settings’ S/N ratio values were determined
and presented in Table 7.

The average S/N ratio of the 18 settings, AVall , was calculated as −24.2290. The line
graph shown in Fig. 9 contains four groups of line segments for factors Wd , θ , Rout , and

123



574 J Glob Optim (2009) 44:563–578

Table 7 The presentation of 18 settings and their S/N ratio values in the fourth factorial experiment

Trial no. 18 Seven-factor settings (L18 orthogonal array) S/N ratio

Wd θ Rmd Rhl Rout Rin ℵ
1 0.3 55 1.6 0.4 1.3 1.3 Type 3 −24.9840

2 0.3 60 1.6 0.4 1.5 1.5 Type 3 −24.4455

3 0.3 65 1.6 0.4 1.7 1.7 Type 3 −24.1661

4 0.4 55 1.6 0.4 1.5 1.7 Type 3 −24.2937

5 0.4 60 1.6 0.4 1.7 1.3 Type 3 −24.0285

6 0.4 65 1.6 0.4 1.3 1.5 Type 3 −24.1983

7 0.5 55 1.6 0.4 1.7 1.5 Type 3 −23.9263

8 0.5 60 1.6 0.4 1.3 1.7 Type 3 −24.1554

9 0.5 65 1.6 0.4 1.5 1.3 Type 3 −24.0307

10 0.3 55 1.6 0.4 1.5 1.5 Type 3 −24.4720

11 0.3 60 1.6 0.4 1.7 1.7 Type 3 −24.1930

12 0.3 65 1.6 0.4 1.3 1.3 Type 3 −24.2889

13 0.4 55 1.6 0.4 1.3 1.7 Type 3 −24.6559

14 0.4 60 1.6 0.4 1.5 1.3 Type 3 −24.1689

15 0.4 65 1.6 0.4 1.7 1.5 Type 3 −24.0159

16 0.5 55 1.6 0.4 1.7 1.3 Type 3 −23.8814

17 0.5 60 1.6 0.4 1.3 1.5 Type 3 −24.1273

18 0.5 65 1.6 0.4 1.5 1.7 Type 3 −24.0895
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Fig. 9 The line graph of the AVlvl of three levels versus the four respective factors

Rin . By taking each factor’s largest AVlvl , we determined the best setting in the experiment,
composed of Rhl = 0.4, Rmd = 1.6, ℵ = Type 3, W 3

d = 0.5, θ3 = 65, R3
out = 1.7, R2

in = 1.5.
And the setting’s S/N ratio, S/Nl g, was determined after completing the ANSYS analysis
as −24.4819.

It was found that S/Nlg is less than AVall , which violates the requirement of Step 7(a) of
the algorithm. Actually, the Step 7(a) is considered in the proposed algorithm as the funda-
mental condition required while applying the Taguchi method. Hence, this violation indicates
that the orthogonal array, L18, is not suitable any more for screening the dominated one from
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the remaining unfixed factors with three levels. Therefore, to process the next design of
experiment, we adopted the zoom-in technique that reduces one level in each non-fixed
factor as depicted in (b) of the algorithm’s Step 7.

Note the level eliminated from each factor is the one generating the smallest AVlvl , and
they are W 3

d = 0.3, θ1 = 55, R1
out = 1.3, R3

in = 1.7, respectively.

3.7 The fifth factorial experiment (fractional)

After a level was reduced, each of the four factors Wd , θ , Rout , and Rin retained two lev-
els to be conducted. Therefore, we chose the two-level Taguchi orthogonal array L8(27)

for the experiment given three-level factors, Rhl = 0.4, Rmd = 1.6 and ℵ = Type 3. Eight
settings were formed according to the array’s requirements and displayed in Table 8. After
completing the ANSYS analyses for all the settings, we determined their S/N ratios and
presented them in Table 8. Meanwhile, the average S/N ratio of the eight settings, AVall , was
−24.1783.

Similarly, a line graph of four segments was shown in Fig. 10, from which the best
setting was determined as W 2

d = 0.4, θ2 = 60, R2
out = 1.5, R1

in = 1.3, Rhl = 0.4, Rmd = 1.6,
ℵ = Type 3. Then, we determined the setting’s S/N ratio, S/Nlg , as −24.1688, which is larger
than the AVall .

Table 8 The presentation of eight settings and their S/N ratio values in the fifth fractional factorial experiment

Trial no. 8 Seven-factor settings (L8(27) orthogonal array) S/N ratio

Wd θ Rout Rin Rhl Rmd ℵ
1 0.4 60 1.5 1.3 0.4 1.6 Type 3 −24.1688

2 0.4 60 1.7 1.5 0.4 1.6 Type 3 −23.8156

3 0.4 65 1.5 1.5 0.4 1.6 Type 3 −24.2860

4 0.4 65 1.7 1.3 0.4 1.6 Type 3 −23.9803

5 0.5 60 1.5 1.5 0.4 1.6 Type 3 −24.1866

6 0.5 60 1.7 1.3 0.4 1.6 Type 3 −24.4699

7 0.5 65 1.5 1.3 0.4 1.6 Type 3 −24.0307

8 0.5 65 1.7 1.5 0.4 1.6 Type 3 −24.4891
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Fig. 10 The line graph of the AVlvl of three levels versus the four respective factors
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Accordingly, Wd , having level 3 as the best level, serves as the most influential factor in
the experiment.

3.8 The sixth factorial experiment (full)

After the last experiment, there remains three non-fixed factors, θ , Rout , and Rin . Since the
three factors generate at most eight combinations affordable to a full factorial approach. The
eight new settings were presented in Table 9, and all the setting’s S/N ratios were determined
by as many ANSYS analyses and shown in the last column of Table 9; the best setting having
S/Nlg of −23.8156 was found in the second row as W 2

d = 0.4, θ2 = 60, R3
out = 1.7, R2

in = 1.5,
Rhl = 0.4, Rmd = 1.6, ℵ = Type 3.

Table 10 presented the top five largest-S/N ratio settings for the case design conducted by
Zeng [11] through 2187-setting trials. Comparing the results between Tables 9 and 10, the
best setting determined in the sixth experiment is exactly the overall best one obtained by
Zeng.

The variations in both S/Nlg and AVall over the six experiments are shown in Fig. 11. We
found that the rate of S/Nlg shows a constant increasing till the value at the last experiment,
and the global optimum to this design of hatch corner is obtained. However, the AVall roughly
levels off, little affected by a level reduced. The present approach used only 53-setting trials
in gaining the overall best setting, shy of 3% the 2187-setting trials by Zeng. Further, we
found the best setting by the first experiment, equivalent to the Taguchi approach, finished
366th of 2187 settings.

Table 9 The presentation of eight settings and their S/N ratio values in the sixth factorial experiment

Trial no. 8 Seven-factor settings S/N ratio

θ Rout Rin Rhl Rmd ℵ Wd

1 60 1.5 1.3 0.4 1.6 Type 3 0.4 −24.1688

2 60 1.7 1.5 0.4 1.6 Type 3 0.4 −23.8156

3 65 1.5 1.5 0.4 1.6 Type 3 0.4 −24.2858

4 65 1.7 1.3 0.4 1.6 Type 3 0.4 −23.9803

5 60 1.5 1.5 0.4 1.6 Type 3 0.4 −24.1903

6 60 1.7 1.3 0.4 1.6 Type 3 0.4 −24.0285

7 65 1.5 1.3 0.4 1.6 Type 3 0.4 −24.2603

8 65 1.7 1.5 0.4 1.6 Type 3 0.4 −24.0159

Table 10 The top five settings of the design by Zeng [11] in a full factorial experiment

θ Rout Rin Rhl Rmd ℵ Wd S/N ratio

Top 1 60 1.7 1.5 0.4 1.6 Type 3 0.4 −23.8156

Top 2 60 1.7 1.7 0.4 1.6 Type 3 0.4 −23.8491

Top 3 55 1.7 1.3 0.4 1.6 Type 3 0.5 −23.8814

Top 4 55 1.7 1.3 0.4 1.6 Type 3 0.4 −23.8958

Top 5 60 1.7 1.3 0.4 1.5 Type 3 0.3 −23.8986
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Fig. 11 The variations of S/Nlg and AVall versus the factorial experiment

4 Conclusions

By creatively blending several fractional factorial experiments and a full factorial one, we
have developed a new, effective and efficient approach for design of experiments. The per-
formance of the proposed approach was verified in designing a hatch corner having a groove
with-a-hole in a containership. From the results, we made the following conclusions:

(1) The proposed approach can find the global optimum of the design of experiment suc-
cessfully with a much lower percentage of trials to those used in a full factorial approach.
For example 3% of the total optional settings were consumed in the design of a hatch
corner having a groove with-a-hole.

(2) Though the Taguchi Technique offers a feasible solution, it hardly provides a global opti-
mum. In the design of a hatch corner having a groove with-a-hole, Taguchi approach’s
solution ranks 366th of 2187 options. We found the rank of the best setting by the
Taguchi approach depends on the problem itself.

(3) The proposed approach ranks the design parameters by their influences on the objective
characteristics of the design. This provides helpful information for designers in deciding
to strengthen or reduce the effects of parameters through planning a new design. The
benefit was not found in conventional factorial approaches, fractional or full.

(4) The proposed approach combines the benefits of both factorial and full factorial
approaches, effective and efficient, and would serve as a total solution tool for
optimization using design of experiments.

The proposed approach has been proven applicable in the design of experiment with a
single objective in this study. Further work employing the approach in optimizing multi-
objective problems is expected.

Acknowledgement We would like to express our gratitude to Dr. Donald R. Jones for many significant
suggestions to facilitate the paper valuable and readable.
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